ВОЛНОВЫЕ УСТРОЙСТВА РЗА: СТАТИСТИЧЕСКИЙ ПОДХОД К ВЫБОРУ УСТАВОК А.Н. ПОДШИВАЛИН, Г.Н. ИСМУКОВ

Россия, г. Чебоксары, ООО «Релематика», e-mail: ismukov_gn@relematika.ru

КЛЮЧЕВЫЕ СЛОВА

Волновое определение места повреждения, волновая защита, чувствительность, селективность, статистические методы.

введение

Волновые методы релейной защиты (РЗА) и определения места повреждения (ОМП) оперируют свободными составляющими переходного процесса при повреждении электрической сети. Методы предполагают измерение характеристик и моментов прихода электромагнитных волн [1, 2, 3]. Сигналы электрической сети содержат шумы, которые затрудняют выделение этих полезных информационных составляющих. В классической РЗА и в ОМП проблема шумов в достаточной мере решается при частотной фильтрации и выделении ортогональных составляющих – фильтры имеют широкие окна и хорошо согласованы с полезным гармоническим сигналом. Эти методы неприменимы для выделения волны повреждения на фоне шумов: фронт имеет негармонический характер, модель волны зависит от структуры электрической сети, измерения выполняются в широком частотном спектре, куда попадают частичные разряды, коронирование элементов сети, высокочастотная связь по линии электропередачи (ЛЭП), шумы от силовых полупроводниковых элементов, радиолокационные сигналы и другие. Целями данной работы являются исследование шумов и выработка требований к выбору уставок волновых защит.

МОДЕЛЬ СИГНАЛА

Рассмотрим следующую модель электроэнергетического сигнала u(t):

$$u(t) = \sum u_{\Pi}(t) + \sum u_{C}(t) + u_{III}(t),$$

где $\sum u_{\Pi}(t)$ – сумма принужденных периодических сигналов энергосистемы;

 $\sum u_{\rm C}(t)$ – сумма свободных составляющих переходных процессов энергосистемы,

на которые должна реагировать волновая РЗА;

 $u_{\rm III}(t)$ – шумовые компоненты.

Компоненты $\sum u_{\Pi}(t)$ и $u_{\Pi}(t)$ могут рассматриваться как помехи, поскольку не содержат электромагнитную волну повреждения. Компоненты $\sum u_{\Pi}(t)$ достаточно хорошо изучены в классической РЗА, существует множество фильтров для их подавления [4]. Однако некоторая их часть $\sum u'_{\Pi}(t)$ может остаться в сигнале.

АДАПТАЦИЯ ИЗМЕРИТЕЛЬНОГО ОРГАНА К ШУМУ

Удобно представить шум в следующем виде:

$$u_{\mathrm{III}}(t) = \sum u_{\mathrm{IIIII}}(t) + u_{\mathrm{HIII}}(t) \,,$$

где $\sum u_{\Pi \Pi \Pi}(t)$ – сумма детерминированных (периодических) квазистационарных компонент шума;

 $u_{\text{HIII}}(t)$ – непериодическая компонента шума.

Компоненты $\sum u_{\Pi\PiI}(t)$ могут быть связаны, например, с работой высокочастотной аппаратуры связи, полупроводниковой электроники и должны учитываться при

проектировании сигнальных фильтров в устройстве РЗА. Но некоторая часть этих компонент $\sum u'_{\Pi \Pi}(t)$ также может остаться в сигнале после фильтрации.

Функция $u_{HIII}(t)$ неизвестна, а потому эта компонента не может быть удалена из сигнала с помощью фильтра. Дискретизированную во времени величину $u_{HIII}(k)$ будем рассматривать как последовательность случайной величины X и применим статистический подход для ее описания. Случайная величина X обладает законом распределения вероятностей на заданном интервале наблюдения. Если функция распределения F_X известна, то возможна оценка вероятности p нахождения X в интервале от A до B:

$$\mathbf{P}(A \le X \le B) = F_X(B) - F_X(A) = p,$$

где Р – функция вероятности.

Пусть компонентам $\sum u'_{\Pi}(k)$ и $\sum u'_{\Pi\Pi}(k)$ соответствуют последовательности случайных величин *Y* и *Z* с функциями распределения *F_Y* и *F_Z* соответственно. Тогда суммарный шум после фильтрации имеет следующую функцию распределения:

$$F_V = F_X * F_Y * F_Z , \qquad (1)$$

где $F_V - \phi$ ункция распределения случайной величины V = X + Y + Z.

* – операция свертки.

Измерительные органы (ИО) волновой РЗА должны быть отстроены от суммарного шума по уровню, либо должна применяться логическая отстройка. В любом случае требуется оценка поведения ИО в условиях шума в нормальном режиме. Рассмотрим ИО максимального действия, выявляющий приход волны повреждения:

$$|v| \ge v_{vcm},\tag{2}$$

где *v* – входная величина ИО;

v_{vcm} – величина уставки.

Величина v_{ycm} должна отстраиваться от суммарного шума V в нормальном режиме, несрабатывание в нормальном режиме определяется вероятностью 1-p, где:

$$p = \mathbf{P}(|V| < v_{ycm}) = F_V(v_{ycm}) - F_V(-v_{ycm}).$$
(3)

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ ШУМА

Устройством волнового ОМП ТОР 300 ЛОК 550 в сети 10 кВ были записаны несколько осциллограмм с частотой дискретизации 1 МГц в нормальном режиме и при повреждении ЛЭП. На рис. 1а приведен фрагмент осциллограммы. До 180 мс наблюдался нормальный режим, затем – повреждение ЛЭП. Примененные в устройстве фильтры подавили большую часть компонент $\sum u_{\Pi}(t)$ и $\sum u_{\Pi\Pi}(t)$ и исключили смещение нуля. На рис. 16 показаны графики плотности распределения рабочей величины и, для сравнения, нормального распределения с тем же параметром σ .

Как видно по рис. 1б, гистограмма распределения исследуемой последовательности симметрична (коэффициент асимметрии $1,4\cdot10^{-2}$), но имеет отличия от модели нормального распределения: провал вблизи M_0 и две симметричные вершины. Среди стандартных распределений отсутствуют схожие законы. Аналог может быть получен путем свертки (1) стандартных законов. Например, в данном случае подходят законы с нормальным и бета распределениями. В частности, бета распределением с параметрами $\alpha = 0.5$, $\beta = 0.5$ описывается синусоидальный сигнал.

По данным предаварийного режима для сигнала на рис. 1а измерена величина $\sigma = 7,3 \cdot 10^{-3}$ В. Пусть уставка (2) равна $v_{ycm} = 3\sigma = 2,19 \cdot 10^{-2}$ В. При нормальном распределении это соответствовало бы вероятности несрабатывания в нормальном режиме p = 0,9973. Как показывает рис. 16, из-за более сжатой формы графика вероятность несрабатывания для наблюдаемого сигнала еще выше.

Рисунок 1. Осциллограмма (а) и плотность распределения случайной величины (б)

При приходе волны КЗ максимальное значение модуля сигнала составило 1,6 В. Пороговое значение v_{vcm} было превышено. Коэффициент чувствительности составил 1.6/2.2·10⁻²=72.7. В таблице 1 представлена статистика для десяти осциллограмм на объекте.

Гаолица 1. Статистика сраоатывания ИО при разных значениях уставки								
Параметр					Значение уставки v_{ycm}			
					3σ, B	6σ, B	9σ,	
Вероятность	1 - p	срабатывания	ИО	В	$2,7\cdot10^{-1}$	$1,2\cdot10^{-3}$	0	

|--|

нормальном режиме работы энергосистемы, %				
Вероятность отказа ИО при обработке первой	0	0	0	
волны повреждения, %				
По таблице видно, что величина уставки	9σ отстроен	а от нормал	ьного режим	ia,

В

обеспечивает срабатывание при всех повреждениях ЛЭП и рекомендуется к применению.

ЗАКЛЮЧЕНИЕ

В докладе представлены результаты анализа видов шумов на входе волновых устройств РЗА. Выполнен статистический анализ распределения сигнала, выявлены его основные характеристики. Подтверждена гипотеза о распределении сигнала на основе осциллограмм, записанных при натурных испытаниях. Выбран доверительный интервал, проверено фактическое попадание области значений сигнала нормального режима в границы этого интервала. Оценена чувствительность волновых измерительных органов к КЗ в наблюдаемом объекте. Показана возможность применения статистических методов для выбора уставок волновых измерительных органов.

ЛИТЕРАТУРА:

1. Dommel H.W., Michels J.M. High speed relaying using travelling wave transient analysis // IEEE Power Eng. Soc. Winter Meet. New York. 1978. P. 1-7.

2. Crossley P.A., McLaren P.G. Distance protection based on traveling waves // IEEE Trans. on PAS-102. No9. Sep. 1983. P. 2971-2983.

3. Abur A., Magnago F.H. Use of time delays between modal components in wavelet based fault location // International Journal of Electrical Power and Energy Systems. Vol. 22. №6. Aug. 2000. P. 397-403.

4. Антонов В.И., Лазарева Н.М., Пуляев В.И. Методы обработки цифовых сигналов энергосистем. М.: Энергопрогресс. 2000.